1 OFDM技術(shù)
OFDM(正交頻分復(fù)用)技術(shù)實(shí)際上是MCM(Multi-Carrier Modulation,多載波調(diào)制)的一種。其主要思想是:將信道分成若干正交子信道,將高速數(shù)據(jù)信號(hào)轉(zhuǎn)換成并行的低速子數(shù)據(jù)流,調(diào)制到在每個(gè)子信道上進(jìn)行傳輸。正交信號(hào)可以通過在接收端采用相關(guān)技術(shù)來分開,這樣可以減少子信道之間的相互干擾(ICI)。每個(gè)子信道上的信號(hào)帶寬小于信道的相關(guān)帶寬,因此每個(gè)子信道上的可以看成平坦性衰落,從而可以消除符號(hào)間干擾。而且由于每個(gè)子信道的帶寬僅僅是原信道帶寬的一小部分,信道均衡變得相對(duì)容易。
結(jié)合簡(jiǎn)要介紹OFDM的工作原理,輸入數(shù)據(jù)信元的速率為R,經(jīng)過串并轉(zhuǎn)換后,分成M個(gè)并行的子數(shù)據(jù)流,每個(gè)子數(shù)據(jù)流的速率為R/M,在每個(gè)子數(shù)據(jù)流中的若干個(gè)比特分成一組,每組的數(shù)目取決于對(duì)應(yīng)子載波上的調(diào)制方式,如PSK、QAM等。M個(gè)并行的子數(shù)據(jù)信元編碼交織后進(jìn)行IFFT變換,將頻域信號(hào)轉(zhuǎn)換到時(shí)域,IFFT塊的輸出是N個(gè)時(shí)域的樣點(diǎn),再將長(zhǎng)為L(zhǎng)p的CP(循環(huán)前綴)加到N個(gè)樣點(diǎn)前,形成循環(huán)擴(kuò)展的OFDM信元,因此,實(shí)際發(fā)送的OFDM信元的長(zhǎng)度為L(zhǎng)p+N,經(jīng)過并/串轉(zhuǎn)換后發(fā)射。接收端接收到的信號(hào)是時(shí)域信號(hào),此信號(hào)經(jīng)過串并轉(zhuǎn)換后移去CP,如果CP長(zhǎng)度大于信道的記憶長(zhǎng)度時(shí),ISI僅僅影響CP,而不影響有用數(shù)據(jù),去掉CP也就去掉了ISI的影響。
OFDM技術(shù)之所以越來越受關(guān)注,是因?yàn)镺FDM有很多獨(dú)特的優(yōu)點(diǎn):
(1)頻譜利用率很高,頻譜效率比串行系統(tǒng)高近一倍。這一點(diǎn)在頻譜資源有限的無線環(huán)境中很重要。OFDM信號(hào)的相鄰子載波相互重疊,從理論上講其頻譜利用率可以接近Nyquist極限。
(2)抗多徑干擾與頻率選擇性衰落能力強(qiáng),由于OFDM系統(tǒng)把數(shù)據(jù)分散到許多個(gè)子載波上,大大降低了各子載波的符號(hào)速率,從而減弱多徑傳播的影響,若再通過采用加循環(huán)前綴作為保護(hù)間隔的方法,甚至可以完全消除符號(hào)間干擾。
(3)采用動(dòng)態(tài)子載波分配技術(shù)能使系統(tǒng)達(dá)到最大比特率。通過選取各子信道,每個(gè)符號(hào)的比特?cái)?shù)以及分配給各子信道的功率使總比特率最大。即要求各子信道信息分配應(yīng)遵循信息論中的“注水定理”,亦即優(yōu)質(zhì)信道多傳送,較差信道少傳送,劣質(zhì)信道不傳送的原則
(4)通過各子載波的聯(lián)合編碼,可具有很強(qiáng)的抗衰落能力。OFDM技術(shù)本身已經(jīng)利用了信道的頻率分集,如果衰落不是特別嚴(yán)重,就沒有必要再加時(shí)域均衡器。但通過將各個(gè)信道聯(lián)合編碼,可以使系統(tǒng)性能得到提高。
(5)基于離散傅立葉變換(DFT)的OFDM有快速算法,OFDM采用IFFT和FFT來實(shí)現(xiàn)調(diào)制和解調(diào),易用DSP實(shí)現(xiàn)。
wimax的核心調(diào)制技術(shù)OFDM
OFDM的基本原理
OFDM是一種無線環(huán)境下的高速傳輸技術(shù)。無線信道的頻率響應(yīng)曲線大多是非平坦的,而OFDM技術(shù)的主要思想就是在頻域內(nèi)將給定信道分成許多正交子信道,在每個(gè)子信道上使用一個(gè)子載波進(jìn)行調(diào)制,并且各子載波并行傳輸。這樣,盡管總的信道是非平坦的,具有頻率選擇性,但是每個(gè)子信道是相對(duì)平坦的,在每個(gè)子信道上進(jìn)行的是窄帶傳輸,信號(hào)帶寬小于信道的相應(yīng)帶寬,因此就可以大大消除信號(hào)波形間的干擾。由于在OFDM系統(tǒng)中各個(gè)子信道的載波相互正交,它們的頻譜是相互重疊的,這樣不但減小了子載波間的相互干擾,同時(shí)又提高了頻譜利用率。
2 OFDM的關(guān)鍵技術(shù)
2.1 同步技術(shù)
OFDM系統(tǒng)中,N個(gè)符號(hào)的并行傳輸會(huì)使符號(hào)的延續(xù)時(shí)間更長(zhǎng),因此它對(duì)時(shí)間的偏差不敏感。對(duì)于無線通信來說,無線信道存在時(shí)變性,在傳輸中存在的頻率偏移會(huì)使OFDM系統(tǒng)子載波之間的正交性遭到破壞,相位噪聲對(duì)系統(tǒng)也有很大的損害。
由于發(fā)送端和接受端之間的采樣時(shí)鐘有偏差,每個(gè)信號(hào)樣本都一定程度地偏離它真確的采樣時(shí)間,此偏差隨樣本數(shù)量的增加而線性增大,盡管時(shí)間偏差壞子載波之間的正交性,但是通常情況下可以忽略不計(jì)。當(dāng)采樣錯(cuò)誤可以被校正時(shí),就可以用內(nèi)插濾波器來控制真確的時(shí)間進(jìn)行采樣。
相位噪聲有兩個(gè)基本的影響,其一是對(duì)所有的子載波引入了一個(gè)隨機(jī)相位變量,跟蹤技術(shù)和差分檢測(cè)可以用來降低共同相位誤差的影響,其次也會(huì)引人一定量的信道間干擾(ICI),因?yàn)橄辔徽`差導(dǎo)致子載波的間隔不再是精確的1/T了。
載波頻率的偏移會(huì)使子信道之間產(chǎn)生干擾。OFDM系統(tǒng)的輸出信號(hào)是多個(gè)相互覆蓋的子信道的疊加,它們之間的正交性有嚴(yán)格的要求。無線信道時(shí)變性的一種具體體現(xiàn)就是多普勒頻移,多普勒頻移與載波頻率以及移動(dòng)臺(tái)的移動(dòng)速度都成正比。多普勒展寬會(huì)導(dǎo)致頻率發(fā)生彌散,引起信號(hào)發(fā)生畸變。從頻域上看,信號(hào)失真會(huì)隨發(fā)送信道的多普勒擴(kuò)展的增加而加劇。因此對(duì)于要求子載波嚴(yán)格同步的OFDM系統(tǒng)來說,載波的頻率偏移所帶來的影響會(huì)更加嚴(yán)重,如果不采取措施對(duì)這種信道間干擾(ICI)加以克服,系統(tǒng)的性能很難得到改善。
OFDM中的同步通常包括3方面的內(nèi)容:
?。?)幀檢測(cè);
?。?)載波頻率偏差及校正;
(3)采樣偏差及校正。
由于同步是OFDM技術(shù)中的一個(gè)難點(diǎn),因此,很多人也提出了很多OFDM同步算法,主要是針對(duì)循環(huán)擴(kuò)展和特殊的訓(xùn)練序列以及導(dǎo)頻信號(hào)來進(jìn)行,其中較常用的有利用奇異值分解的ESPRIT同步算法和ML估計(jì)算法,其中ESPRIT算法雖然估計(jì)精度高,但計(jì)算復(fù)雜,計(jì)算量大,而ML算法利用OFDM信號(hào)的循環(huán)前綴,可以有效地對(duì)OFDM信號(hào)進(jìn)行頻偏和時(shí)偏的聯(lián)合估計(jì),而且與ESPRIT算法相比,其計(jì)算量要小得多。對(duì)OFDM技術(shù)的同步算法研究得比較多,需要根據(jù)具體的系統(tǒng)具體設(shè)計(jì)和研究,利用各種算法融合進(jìn)行聯(lián)合估計(jì)才是可行的。OFDM系統(tǒng)對(duì)定時(shí)頻偏的要求是小于OFDM符號(hào)間隔的4%,對(duì)頻率偏移的要求大約要小于子載波間隔的1%~2%,系統(tǒng)產(chǎn)生的-3dB相位噪聲帶寬大約為子載波間隔的0.01%~ 0.1%。
2.2 PARP的解決
由于OFDM信號(hào)是有一系列的子信道信號(hào)重疊起來的,所以很容易造成較大的PAPR。大的OFDM PAPR 信號(hào)通過功率放大器時(shí)會(huì)有很大的頻譜擴(kuò)展和帶內(nèi)失真。但是由于大的PARP的概率并不大,可以把大的PAPR值的OFDM信號(hào)去掉。但是把大的PAPR值的OFDM信號(hào)去掉會(huì)影響信號(hào)的性能,所以采用的技術(shù)必須保證這樣的影響盡量小。一般通過以下幾種技術(shù)解決:
(1)信號(hào)失真技術(shù)。采用修剪技術(shù)、峰值窗口去除技術(shù)或峰值刪除技術(shù)使峰值振幅值簡(jiǎn)單地線性去除。
?。?)編碼技術(shù)。采用專門的前向糾錯(cuò)碼會(huì)使產(chǎn)生非常大的PAPR的OFDM符號(hào)去除。
?。?)擾碼技術(shù)。采用擾碼技術(shù),使生成的OFDM的互相關(guān)性盡量為0,從而使OFDM的PAPR減少。這里的擾碼技術(shù)可以對(duì)生成的OFDM信號(hào)的相位進(jìn)行重置,典型的有PTS和SLM。
2.3 訓(xùn)練序列/導(dǎo)頻及信道估計(jì)技術(shù)
接收端使用差分檢測(cè)時(shí)不需要信道估計(jì),但仍需要一些導(dǎo)頻信號(hào)提供初始的相位參考,差分檢測(cè)可以降低系統(tǒng)的復(fù)雜度和導(dǎo)頻的數(shù)量,但卻損失了信噪比。尤其是在OFDM系統(tǒng)中,系統(tǒng)對(duì)頻偏比較敏感,所以一般使用相干檢測(cè)。
在系統(tǒng)采用相干檢測(cè)時(shí),信道估計(jì)是必須的。此時(shí)可以使用訓(xùn)練序列和導(dǎo)頻作為輔助信息,訓(xùn)練序列通常用在非時(shí)變信道中,在時(shí)變信道中一般使用導(dǎo)頻信號(hào)。在OFDM系統(tǒng)中,導(dǎo)頻信號(hào)是時(shí)頻二維的。為了提高估計(jì)的精度,可以插入連續(xù)導(dǎo)頻和分散導(dǎo)頻,導(dǎo)頻的數(shù)量是估計(jì)精度和系統(tǒng)復(fù)雜的折衷。導(dǎo)頻信號(hào)之間的間隔取決于信道的相干時(shí)間和相干帶寬,在時(shí)域上,導(dǎo)頻的間隔應(yīng)小于相干時(shí)間;在頻域上,導(dǎo)頻的間隔應(yīng)小于相干帶寬。實(shí)際應(yīng)用中,導(dǎo)頻的模式的設(shè)計(jì)要根據(jù)具體情況而定。