自1960年第一臺激光器問世以來,激光的研究及其在各個領(lǐng)域的應(yīng)用得到了迅速的發(fā)展。其高相干性在高精密測量、物質(zhì)結(jié)構(gòu)分析、信息存儲及通信等領(lǐng)域得到了廣泛應(yīng)用。激光的高方向性和高亮度可廣泛應(yīng)用于加工制造業(yè)。隨著激光器件、新型受激輻射光源,以及相應(yīng)工藝的不斷革新與優(yōu)化,尤其是近20年來,激光制造技術(shù)已滲入到諸多高新技術(shù)領(lǐng)域和產(chǎn)業(yè),并開始取代或改造某些傳統(tǒng)的加工業(yè)。
為適應(yīng)21世紀(jì)高新技術(shù)的產(chǎn)業(yè)化、滿足微觀制造的需要,研究和開發(fā)高性能激光源勢在必行。作為激光加工的一個分支,激光微加工在過去十年被廣泛關(guān)注。其中原因之一是由于更加有效的激光源不斷涌現(xiàn)。比如具有非常高峰值功率和超短脈沖固體激光,有很高光束質(zhì)量的二極泵浦的Nd:YAG激光器等。另外一個原因是有了更為精確、高速的數(shù)控操作平臺。但一個更為重要的原因是不斷涌現(xiàn)的工業(yè)需求。在微電子加工中,半導(dǎo)體層的穿孔、寄存器的剪切和電路修復(fù)都用到激光微加工技術(shù)。激光微加工一般所指加工尺寸在幾個到幾百微米的工藝過程。激光脈沖的寬度在飛秒(fs)到納秒(ns)之間。激光波長從遠(yuǎn)紅外到X射線的很寬波段范圍。目前主要應(yīng)用于微電子、微機械和微光學(xué)加工三大領(lǐng)域。隨著激光微加工技術(shù)的發(fā)展和成熟,將在更廣的領(lǐng)域得到推廣和應(yīng)用。
二、激光微加工技術(shù)的主要應(yīng)用
隨著電子產(chǎn)品朝著便攜式、小型化的方向發(fā)展,單位體積信息的提高(高密度)和單位時間處理速度的提高(高速化)對微電子封裝技術(shù)提出不斷增長的新需求。例如現(xiàn)代手機和數(shù)碼相機每平方厘米安裝大約為1200條互連線。提高芯片封裝水平的關(guān)鍵之處就是在不同層面的線路之間保留微型過孔的存在,這樣通過微型過孔不僅提供了表面安裝器件與下面信號面板之間的高速連接,而且有效地減小了封裝面積。
另一方面,隨著近年來全球手機、數(shù)碼相機和筆記本電腦等便攜式電子產(chǎn)品向輕、薄、短、小的趨勢發(fā)展,印制線路板(PCB)逐步呈現(xiàn)出以高密度互連技術(shù)為主體的積層化、多功能化特征。為了有效地保證各層間的電氣連接以及外部器件的固定,過孔(via)已成為多層PCB的重要組成部分之一。目前鉆孔的費用通常占PCB制板費用的30%-40%。在高速、高密度的PCB設(shè)計時,設(shè)計者總是希望過孔越小越好,這樣板上不僅可以留有更多的布線空間。而且過孔越小,越適合用于高速電路。傳統(tǒng)的機械鉆孔最小的尺寸僅為100μm,這顯然已不能滿足要求,代而取之的是一種新型的激光微型過孔加工方式。目前用CO2激光器加工在工業(yè)上可獲得過孔直徑達(dá)到在30-40μm的小孔或用UV激光加工10μm 左右的小孔。
激光微加工技術(shù)在設(shè)備制造業(yè)、汽車以及航空精密制造業(yè)和各種微細(xì)加工業(yè)中可用激光進(jìn)行切割、鉆孔、雕刻、劃線、熱滲透、焊接等,如20多微米大小的噴墨打印機的噴墨口的加工。利用諸如微壓型、打磨拋光等激光表面處理技術(shù)來加工多種微型光學(xué)元件,也可通過諸如激光填充多孔玻璃,玻璃陶瓷的非晶化來改變組織結(jié)構(gòu),然后,通過調(diào)和外部機械力,再在軟化階段依靠等離子體輔助進(jìn)行微成形來加工微光學(xué)元件。
三、超短脈沖激光在微加工技術(shù)的最新進(jìn)展
CO2激光和YAG激光是連續(xù)和長脈沖激光,主要靠聚焦形成高能量密度,從而在局部產(chǎn)生高溫來燒蝕材料,基本上屬于熱加工范疇,加工精度有限。準(zhǔn)分子激光則依靠其短波長(紫外)與材料進(jìn)行光化學(xué)相互作用,其特征尺度可達(dá)到微米量級,但準(zhǔn)分子激光器所需的氣體是腐蝕性的,難以操控,而且,高強紫外激光對加工系統(tǒng)的光學(xué)元件容易造成損傷,其應(yīng)用因而受到限制。隨著對激光領(lǐng)域的深入研究,激光脈沖的時域?qū)挾缺粔嚎s得越來越短,從納秒(10-9s)量級到了皮秒(10-12s)量級直至飛秒(10-l5s)量級。
飛秒脈沖激光具有以下兩個特點:(1)脈沖持續(xù)時間短。飛秒脈沖的持續(xù)時間可以短至幾個飛秒,而光在1fs內(nèi)僅僅傳播0.3μm,比大多數(shù)細(xì)胞的直徑還要短;(2)峰值功率極高。飛秒激光將脈沖能量集中在幾個至幾百個飛秒的極短時間內(nèi),因此其峰值功率很高。例如,將lμJ的能量集中在幾個飛秒時間內(nèi)并會聚成10μm的光斑,其光功率密度可達(dá)到1018W/cm2,將其換算成電場強度則為2×1012V/m,為氫原子中庫侖場強(5×1011V/m)的4倍,這就有可能將電子從原子中直接剝離出來。
從激光與透明材料的相互作用機理來看,脈沖寬度從連續(xù)激光到幾十皮秒,損傷機制為雪崩電離過程,依賴與初始的電子密度,而材料中的初始電子密度由于材料中雜質(zhì)分布的不均勻而變化很大。因此,損傷閾值變化也很大。對長脈沖激光損傷閾值定義為可引起損傷幾率為50%的激光能流密度,即長脈沖激光損傷閾值是一個統(tǒng)計值。超短脈沖激光的場強極高,束縛電子可以同時吸收n個光子直接從束縛能級躍遷到自由能級。超短脈沖激光引起的損傷雖然也是雪崩電離過程,但其電子由多光子電離過程產(chǎn)生,不再依賴于材料中的初始電子密度,因此,損傷閾值是精確值。脈沖激光的損傷閾值是隨脈沖寬度下降而明顯減小,到了皮秒量級,下降速率變緩,到飛秒量級時已基本不變。
另外,由于超短脈沖激光的損傷閾值很精確,因此將激光的能量控制在正好等于或略高于損傷閾值,則只有高于損傷閾值的部分產(chǎn)生燒蝕,可進(jìn)行低于衍射極限的亞微米加工。飛秒激光可產(chǎn)生超高光強、具有精確且較低的損傷閾值,很小的熱影響區(qū)、幾乎可精密加工所有種類材料,并且,加工精度極高,可進(jìn)行亞微米尺寸的精密加工。
激光微加工生產(chǎn)效率高,成本低,加工質(zhì)量穩(wěn)定可靠,具有良好的經(jīng)濟效益和社會效益。飛秒激光以其獨特的脈沖持續(xù)時間短、峰值功率高等優(yōu)越性能正在打破以往傳統(tǒng)的激光加工方法,開創(chuàng)了材料超精細(xì)、無熱損傷和3D空間加工和處理的新領(lǐng)域。飛秒激光加工技術(shù)應(yīng)用包括微電子學(xué)、光子晶體器件、高信息傳輸速度(1Tbit/s)的光纖通訊器件、微機械加工、新型三維光存儲器、以及微細(xì)醫(yī)療器件制作和細(xì)胞生物工程技術(shù)等方面具有廣泛應(yīng)用前景??梢灶A(yù)言,激光微制造技術(shù)必將以其無可替代的優(yōu)勢成為21世紀(jì)迅速發(fā)展的一項高新技術(shù)。