1 引 言
本頻率計的設計以AT89C51單片機為核心,利用他內(nèi)部的定時/計數(shù)器完成待測信號周期/頻率的測量。單片機AT89C51內(nèi)部具有2個16位定時/計數(shù)器,定時/計數(shù)器的工作可以由編程來實現(xiàn)定時、計數(shù)和產(chǎn)生計數(shù)溢出時中斷要求的功能。在定時器工作方式下,在被測時間間隔內(nèi),每來一個機器周期,計數(shù)器自動加1(使用12 MHz時鐘時,每1μs加1),這樣以機器周期為基準可以用來測量時間間隔。在計數(shù)器工作方式下,加至外部引腳的待測信號發(fā)生從1到0的跳變時計數(shù)器加1,這樣在計數(shù)閘門的控制下可以用來測量待測信號的頻率。外部輸入在每個機器周期被采樣一次,這樣檢測一次從1到0的跳變至少需要2個機器周期(24個振蕩周期),所以最大計數(shù)速率為時鐘頻率的1/24(使用12 MHz時鐘時,最大計數(shù)速率為500 kHz)。定時/計數(shù)器的工作由運行控制位TR控制,當TR置1,定時/計數(shù)器開始計數(shù);當TR清0,停止計數(shù)。
本設計綜合考慮了頻率測量精度和測量反應時間的要求。例如當要求頻率測量結(jié)果為3位有效數(shù)字,這時如果待測信號的頻率為1 Hz,則計數(shù)閘門寬度必須大于1 000 s。為了兼顧頻率測量精度和測量反應時間的要求,把測量工作分為兩種方法:
?。?)當待測信號的頻率>100 Hz時,定時/計數(shù)器構(gòu)成為計數(shù)器,以機器周期為基準,由軟件產(chǎn)生計數(shù)閘門,計數(shù)閘門寬度>1 s時,即可滿足頻率測量結(jié)果為3位有效數(shù)字;
?。?)當待測信號的頻率<100 Hz時,定時/計數(shù)器構(gòu)成為定時器,由頻率計的予處理電路把待測信號變成方波,方波寬度等于待測信號的周期。這時用方波作計數(shù)閘門,當待測信號的頻率=100 Hz,使用12 MHz時鐘時的最小計數(shù)值為10 000,完全滿足測量精度的要求。
2 頻率計的量程自動切換
使用計數(shù)方法實現(xiàn)頻率測量時,外部的待測信號為單片機定時/計數(shù)器的計數(shù)源,利用軟件延時程序?qū)崿F(xiàn)計數(shù)閘門。頻率計的工作過程為:定時/計數(shù)器的計數(shù)寄存器清0,運行控制位TR置1,啟動定時/計數(shù)器工作;運行軟件延時程序,同時定時/計數(shù)器對外部的待測信號進行計數(shù),延時結(jié)束時TR清0,停止計數(shù)。從計數(shù)寄存器讀出測量數(shù)據(jù),測量數(shù)據(jù)在完成數(shù)據(jù)處理后,由顯示電路顯示測量結(jié)果。
使用定時方法實現(xiàn)頻率測量時,外部的待測信號通過頻率計的預處理電路變成寬度等于待測信號周期的方波,該方波同樣加至定時/計數(shù)器的輸入腳。工作高電平是否加至定時/計數(shù)器的輸入腳;當判定高電平加至定時/計數(shù)器的輸入腳,運行控制位TR置1,啟動定時/計數(shù)器對單片機的機器周期的計數(shù),同時檢測方波高電平是否結(jié)束;當判定高電平結(jié)束時TR清0,停止計數(shù),然后從計數(shù)寄存器讀出測量數(shù)據(jù)。這時讀出的數(shù)據(jù)反映的是待測信號的周期,通過數(shù)據(jù)處理把周期值變換成頻率值,由顯示電路顯示測量結(jié)果。
測量結(jié)果的顯示格式采用科學計數(shù)法,即有效數(shù)字乘以10為底的冪。這里設計的頻率計用5位數(shù)碼管顯示測量結(jié)果:前3位為測量結(jié)果的有效數(shù)字;第4位為指數(shù)的符號;第5位為指數(shù)的值。采用這種顯示格式既保證了測量結(jié)果的顯示精度,又保證了測量結(jié)果的顯示范圍(0.100 Hz~9.99 MHz)。
頻率計測量量程自動轉(zhuǎn)換的過程由頻率計測量量程的高端開始。由于只顯示3位有效數(shù)字,測量量程的高端計數(shù)閘門不需要太寬,例如在進入計數(shù)器的信號頻率范圍在10.0~99.9 kHz,計數(shù)閘門寬度為10 ms即可。頻率計開始工作時使用計數(shù)方法實現(xiàn)頻率測量,并使計數(shù)閘門寬度為最窄,完成測量后判斷測量結(jié)果是否具有3位有效數(shù)字,如果成立,將結(jié)果送去顯示,完成測量工作;否則將計數(shù)閘門寬度擴大10倍,繼續(xù)進行測量判斷,直到計數(shù)閘門寬度達到1 s,這時對應的進入單片機的待測信號頻率范圍為100~999 Hz。如果測量結(jié)果仍不具有3位有效數(shù)字,頻率計則使用定時方法實現(xiàn)頻率測量。
定時方法測量的是待測信號的周期,這種方法只設一種量程,測量結(jié)果通過浮點數(shù)運算模塊將信號周期轉(zhuǎn)換成對應的頻率值,再將結(jié)果送去顯示。無論采用何種方式,只要完成一次測量,頻率計自動開始下一個測量循環(huán),因此該頻率計具有連續(xù)測量的功能,同時實現(xiàn)量程的自動轉(zhuǎn)換。
3 信號預處理電路
信號預處理電路如圖1所示,他由4級電路構(gòu)成。第1級為零偏置放大器,當輸入信號為零或者為負電壓時,三極管截止,輸出高電平;當輸入信號為正電壓時,三極管導通,輸出電壓隨著輸入電壓的上升而下降。零偏置放大器可把正負交替波形變換成單向脈沖,這使得頻率計既可以測量脈沖信號的頻率,也可以測量正弦波信號的頻率。放大器的放大能力實現(xiàn)了對小信號的測量,本電路可以測量幅度≥0.5 V的正弦波或脈沖波待測信號。三極管應采用開關三極管以保證放大器具有良好的高頻響應。第2級采用帶施密特觸發(fā)器的反相器7414,他用于把放大器生成的單向脈沖變換成與TTL/CMOS電平相兼容的方波。第3級采用十進制同步計數(shù)器74160,第2級輸出的方波加到74160的CLK,當從74160的TC輸出可實現(xiàn)10分頻(多個74160的級連可以進一步擴展測頻范圍)。第4級同樣采用十進制同步計數(shù)器74160,第3級輸出的方波加到他的CLK,當從他的Q0輸出既可實現(xiàn)2分頻,且其輸出為對稱方波,方波寬度等于待測信號的周期,從而為測量信號周期提供基礎。
4 系統(tǒng)軟件設計
頻率計開始工作或者完成一次頻率測量,系統(tǒng)軟件都進行測量初始化。測量初始化模塊設置堆棧指針(SP)、工作寄存器、中斷控制和定時/計數(shù)器的工作方式。定時/計數(shù)器的工作首先被設置為計數(shù)器方式,即用來測量信號頻率。首先定時/計數(shù)器的計數(shù)寄存器清0,運行控制位TR置1,啟動對待測信號的計數(shù)。計數(shù)閘門由軟件延時程序?qū)崿F(xiàn),從計數(shù)閘門的最小值(即測量頻率的高量程)開始測量,計數(shù)閘門結(jié)束時TR清0,停止計數(shù)。計數(shù)寄存器中的數(shù)值經(jīng)過數(shù)制轉(zhuǎn)換程序從十六進制數(shù)轉(zhuǎn)換為十進制數(shù)。判斷該數(shù)的最高位,若該位不為0,滿足測量數(shù)據(jù)有效位數(shù)的要求,測量值和量程信息一起送到顯示模塊;若該位為0,將計數(shù)閘門的寬度擴大10倍,重新對待測信號的計數(shù),直到滿足測量數(shù)據(jù)有效位數(shù)的要求。
當上述測量判斷過程直到計數(shù)閘門寬度達到1 s(對應的頻率測量范圍為100~999 Hz)時測量結(jié)果仍不具有3位有效數(shù)字,頻率計則使用定時方法測量待測信號的周期。定時/計數(shù)器的工作被設置為定時器方式,定時/計數(shù)器的計數(shù)寄存器清0,在判斷待測信號的上跳沿到來后,運行控制位TR置為1,以單片機工作周期為單位進行計數(shù),直至信號的下跳沿到來,運行控制位TR清0,停止計數(shù)。16位定時/計數(shù)器的最高計數(shù)值為65 535,當待測信號的頻率較低時,定時/計數(shù)器將發(fā)生溢出。產(chǎn)生溢出時,程序進入定時器中斷服務程序,對溢出次數(shù)進行計數(shù)。待測信號的周期由3個字節(jié)組成:定時/計數(shù)器溢出次數(shù)、定時/計數(shù)器的高8位和低8位。信號的頻率f與信號的周期T之間的關系為: f=1/T
完成信號的周期測量后,需要做一次倒數(shù)運算才能獲得信號的頻率。為提高運算精度,采用浮點數(shù)算術運算。浮點數(shù)由3個字節(jié)組成:第1字節(jié)最高位為數(shù)符,其余7位為階碼;第2字節(jié)為尾數(shù)的高字節(jié);第3字節(jié)為尾數(shù)的低字節(jié)。待測信號周期的3個字節(jié)定點數(shù)通過截取高16位、設置數(shù)符和計算階碼轉(zhuǎn)換為上述格式的浮點數(shù)。然后浮點數(shù)算術運算對其進行處理,獲得用浮點數(shù)格式表達的信號頻率值。再通過浮點數(shù)到BCD碼轉(zhuǎn)換模塊把用浮點數(shù)格式表達的信號頻率值變換成本頻率計的顯示格式,送到顯示模塊顯示待測信號的頻率值。完成顯示后,頻率計都開始下一次信號的頻率測量。系統(tǒng)軟件流程圖如圖2所示。
系統(tǒng)軟件設計采用模塊化設計方法。整個系統(tǒng)由初始化模塊、顯示模塊和信號頻率頻率測量模塊等各種功能模塊組成。上電后,進入系統(tǒng)初始化模塊,系統(tǒng)軟件開始運行。在執(zhí)行過程中,根據(jù)運行流程分別調(diào)用各個功能模塊完成頻率測量、量程自動切換、周期測量和測量結(jié)果顯示。
5 實測結(jié)果和誤差分析
為了衡量這次設計的頻率計的工作情況和測量精度,我們對系統(tǒng)進行了試驗。以南京電訊儀器廠制造的E312B型通用計數(shù)器為基準,用這次設計的頻率計對信號源進行了測量,測量數(shù)據(jù)如表1所示。
如圖1信號預處理電路所示,待測信號在進入單片機之前經(jīng)過了10×2次分頻。頻率計以進入單片機時的信號頻率=100 Hz為基準(即待測信號頻率為2 kHz),大于此頻率采用頻率測量,小于此頻率采用周期測量。由表1頻率測量對比表可以看出,頻率測量的測量精度大于周期測量的測量精度。